Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
J Mater Chem B ; 12(16): 4004-4017, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38568714

RESUMEN

Melatonin (MT) is a vital hormone controlling biorhythms, and optimizing its release in the human body is crucial. To address MT's unfavorable pharmacokinetics, we explored the inclusion complexes of MT with ß-cyclodextrin (ß-CD). Nano spray drying was applied to efficiently synthesize these complexes in three molar ratios (MT : ß-CD = 1 : 1, 2 : 1, and 1 : 2), reducing reagent use and expediting inclusion. The complex powders were characterized through thermal analyses (TGA and DSC), Fourier transform infrared spectroscopy (FTIR), and in vitro MT release measurements via high-performance liquid chromatography (HPLC). In parallel, computational studies were conducted, examining the stability of MT : ß-CD complexes by means of unbiased semi-empirical conformational searches refined by DFT, which produced a distribution of MT : ß-CD binding enthalpies. Computational findings highlighted that these complexes are stabilized by specific hydrogen bonds and non-specific dispersive forces, with stronger binding in the 1 : 1 complex, which was corroborated by in vitro release data. Furthermore, the alignment between simulated and experimental FTIR spectra demonstrated the quality of both the structural model and computational methodology, which was crucial to enhance our comprehension of optimizing MT's release for therapeutic applications.


Asunto(s)
Melatonina , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Melatonina/química , Teoría Funcional de la Densidad , Liberación de Fármacos , Espectroscopía Infrarroja por Transformada de Fourier
2.
Biophys Chem ; 298: 107023, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148823

RESUMEN

We have studied by means of small angle neutron scattering and diffraction, and molecular dynamics simulations the effect of lipid membrane fluidity on the amyloid-beta peptide interactions with the membrane. These interactions have been discovered previously to trigger the reorganization of model membranes between unilamellar vesicles and planar membranes (bicelle-like structures) during the lipid phase transition. The morphology changes were taking place in rigid membranes prepared of fully saturated lipids and were proposed to play a role in the onset of amyloid related disorders. We show in this study that the replacement of fully saturated lipids by more fluid mono-unsaturated lipids eliminates the mentioned morphology changes, most likely due to the absence of phase transition within the temperature range investigated. We have therefore controlled the membrane rigidity also while ensuring the presence of membrane phase transition within the biologically relevant temperatures. It was done by the addition of melatonin and/or cholesterol to the initial membranes made of saturated lipids. Small angle neutron scattering experiments performed over a range of cholesterol and melatonin concentrations show their distinctive effects on the local membrane structure only. The cholesterol for example affects the membrane curvature such that spontaneously formed unilamellar vesicles are of much larger sizes than those formed by the neat lipid membranes or membranes with melatonin added. The temperature dependent experiments, however, reveal no influence on the previously discovered membrane breakage whether cholesterol or melatonin have been added.


Asunto(s)
Melatonina , Fluidez de la Membrana , Membrana Dobles de Lípidos/química , Melatonina/química , Péptidos beta-Amiloides/química , Liposomas Unilamelares/química , Colesterol/química
3.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364290

RESUMEN

2,3-Dihydroindoles are promising agents for the synthesis of new compounds with neuroprotective and antioxidant properties. Usually, these compounds are obtained by direct reduction of the corresponding indoles containing acceptor groups in the indole ring for its activation. In this work, we propose a synthetic strategy to obtain new 2,3-dihydroindole derivatives from the corresponding polyfunctional 2-oxindoles. Three methods were proposed for reduction of functional groups in the 2-oxindole and 2-chloroindole molecules using various boron hydrides. The possibility of chemoselective reduction of the nitrile group in the presence of an amide was shown. The proposed synthetic strategy can be used, for example, for the synthesis of new analogs of the endogenous hormone melatonin and other compounds with neuroprotective properties.


Asunto(s)
Melatonina , Receptores de Melatonina , Relación Estructura-Actividad , Melatonina/química , Antioxidantes/química , Unión Proteica
4.
Eur J Med Chem ; 243: 114762, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36150258

RESUMEN

In crystal structures of melatonin MT1 and MT2 receptors, a lipophilic subpocket has been characterized which accommodates the phenyl ring of the potent agonist 2-phenylmelatonin. This subpocket appears a key structural element to achieve high binding affinity and selectivity for the MT2 receptor. A series of 2-arylindole ligands was synthesized to probe the requirements for the optimal occupation and interaction with the 2-phenyl binding pocket. Thermodynamic integration simulations applied to MT1 and MT2 receptors in complex with the α-naphthyl derivative provided a rationale for the MT2-selectivity and investigation on the binding mode of a couple of atropisomers allowed to define the available space and arrangement of substituents inside the subpocket. Interestingly, more hydrophilic 2-aza-substituted compounds displayed high binding affinity and molecular dynamics simulations highlighted polar interaction with residues from the subpocket that could be responsible for their potency.


Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Receptor de Melatonina MT2 , Ligandos , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Simulación de Dinámica Molecular , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/química , Receptor de Melatonina MT2/metabolismo
5.
Int J Pharm ; 627: 122195, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36115466

RESUMEN

Melatonin (MEL) is a pleiotropic neurohormone of increasing interest as a neuroprotective agent in ocular diseases. Improving the mucoadhesiveness is a proposed strategy to increase the bioavailability of topical formulations. Herein, the design and optimization of MEL-loaded lipid-polymer hybrid nanoparticles (mel-LPHNs) using Design of Experiment (DoE) was performed. LPHNs consisted of PLGA-PEG polymer nanoparticles coated with a cationic lipid-shell. The optimized nanomedicine showed suitable size for ophthalmic administration (189.4 nm; PDI 0.260) with a positive surface charge (+39.8 mV), high encapsulation efficiency (79.8 %), suitable pH and osmolarity values, good mucoadhesive properties and a controlled release profile. Differential Scanning Calorimetry and Fourier-Transform Infrared Spectroscopy confirmed the encapsulation of melatonin in the systems and the interaction between lipids and polymer matrix. Biological evaluation in an in vitro model of diabetic retinopathy demonstrated enhanced neuroprotective and antioxidant activities of mel-LPHNs, compared to melatonin aqueous solution at the same concentration (0.1 and 1 µM). A modified Draize test was performed to assess the ocular tolerability of the formulation showing no signs of irritation. To the best our knowledge, this study reported for the first time the development of mel-LPHNs, a novel and safe hybrid platform suitable for the topical management of retinal diseases.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Melatonina , Nanopartículas , Fármacos Neuroprotectores , Humanos , Nanomedicina , Melatonina/química , Preparaciones de Acción Retardada , Antioxidantes/farmacología , Retinopatía Diabética/tratamiento farmacológico , Nanopartículas/química , Polímeros/química , Lípidos/química , Tamaño de la Partícula , Portadores de Fármacos/química
6.
Nat Commun ; 13(1): 454, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075127

RESUMEN

Melatonin receptors (MT1 and MT2 in humans) are family A G protein-coupled receptors that respond to the neurohormone melatonin to regulate circadian rhythm and sleep. Numerous efforts have been made to develop drugs targeting melatonin receptors for the treatment of insomnia, circadian rhythm disorder, and cancer. However, designing subtype-selective melatonergic drugs remains challenging. Here, we report the cryo-EM structures of the MT1-Gi signaling complex with 2-iodomelatonin and ramelteon and the MT2-Gi signaling complex with ramelteon. These structures, together with the reported functional data, reveal that although MT1 and MT2 possess highly similar orthosteric ligand-binding pockets, they also display distinctive features that could be targeted to design subtype-selective drugs. The unique structural motifs in MT1 and MT2 mediate structural rearrangements with a particularly wide opening on the cytoplasmic side. Gi is engaged in the receptor core shared by MT1 and MT2 and presents a conformation deviating from those in other Gi complexes. Together, our results provide new clues for designing melatonergic drugs and further insights into understanding the G protein coupling mechanism.


Asunto(s)
Receptor de Melatonina MT1/química , Receptor de Melatonina MT2/química , Secuencias de Aminoácidos , Microscopía por Crioelectrón , Humanos , Indenos/química , Indenos/metabolismo , Ligandos , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Unión Proteica , Conformación Proteica , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo
7.
Molecules ; 27(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35056757

RESUMEN

Melatonin (MLT) is involved in many functions of the human body, mainly in sleeping-related disorders. It also has anti-oxidant potential and has been proven very effective in the treatment of seasonal affective disorders (SAD), which afflict some people during short winter days. Melatonin has been implicated in a range of other conditions, including Parkinson's disease, Alzheimer's and other neurological conditions, and in certain cancers. Its poor solubility in water leads to an insufficient absorption that led scientists to investigate MLT inclusion in cyclodextrins (CDs), as inclusion of drugs in CDs is a way of increasing the solubility of many lipophilic moieties with poor water solubility. The aim of this review is to gather all the key findings on MLT/CD complexes. The literature appraisal concluded that MLT inclusion leads to a 1:1 complex with the majority of CDs and increases the solubility of the hormone. The interactions of MLT with CDs can be studied by a variety of techniques, such as NMR, FT-IR, XRD and DCS. More importantly, the in vivo experiments showed an increase in the uptake of MLT when included in a CD.


Asunto(s)
Ciclodextrinas/química , Melatonina/química , Melatonina/farmacocinética , Disponibilidad Biológica , Portadores de Fármacos/química , Humanos , Espectroscopía de Resonancia Magnética , Melatonina/farmacología , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
8.
Carbohydr Polym ; 277: 118865, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893270

RESUMEN

Tendon injury is one of the most common musculoskeletal diseases in the world, severely challenging the public health care system. Electrospinning technique using polymer materials (i.e. polycaprolactone (PCL)) and hydrogels (i.e. sodium alginate (ALG)) contribute to the development and application of smart composite scaffolds in the tendon tissue engineering by advantageously integrating mechanical properties and biocompatibility. As a potential natural antioxidant, melatonin (MLT) represents the potential to promote tendon repair. Here, we develop an MLT-loaded PCL/ALG composite scaffold that effectively promotes tendon injury repair in vivo and in vitro via a controlled release of MLT, possibly mechanically relying on an antioxidant stress pathway. This biomimetic composite scaffold will be of great significance in the tendon tissue engineering.


Asunto(s)
Tendón Calcáneo/efectos de los fármacos , Alginatos/farmacología , Materiales Biomiméticos/farmacología , Hidrogeles/farmacología , Melatonina/farmacología , Poliésteres/farmacología , Tendón Calcáneo/lesiones , Tendón Calcáneo/patología , Alginatos/química , Animales , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Células Cultivadas , Hidrogeles/química , Masculino , Melatonina/química , Poliésteres/química , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos , Andamios del Tejido/química
9.
J Nanobiotechnology ; 19(1): 371, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789285

RESUMEN

BACKGROUND: Effective amelioration of neuronal damages in the case of cerebral ischemic stroke (CIS) is essential for the protection of brain tissues and their functional recovery. However, most drugs can not penetrate the blood-brain barrier (BBB), resulting in the poor therapeutic outcomes. RESULTS: In this study, the derivatization and dual targeted delivery technologies were used to actively transport antioxidant melatonin (MLT) into the mitochondria of oxidative stress-damaged cells in brain tissues. A mitochondrial targeting molecule triphenylphosphine (TPP) was conjugated to melatonin (TPP-MLT) to increase the distribution of melatonin in intracellular mitochondria with the push of mitochondrial transmembrane potential. Then, TPP-MLT was encapsulated in dual targeted micelles mediated by TGN peptide (TGNYKALHPHNG) with high affinity for BBB and SHp peptide (CLEVSRKNG) for the glutamate receptor of oxidative stress-damaged neural cells.TGN/SHp/TPP-MLT micelles could effectively scavenge the overproduced ROS to protect neuronal cells from oxidative stress injury during CIS occurrence, as reflected by the improved infarct volume and neurological deficit in CIS model animals. CONCLUSIONS: These promising results showed this stepwise-targeting drug-loaded micelles potentially represent a significant advancement in the precise treatment of CIS.


Asunto(s)
Antioxidantes , Isquemia Encefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Melatonina , Compuestos Organofosforados , Animales , Antioxidantes/química , Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Línea Celular , Melatonina/química , Melatonina/farmacología , Ratones , Micelas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Estrés Oxidativo/efectos de los fármacos
10.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769013

RESUMEN

Although melatonin is an astonishing molecule, it is possible that chemistry will help in the discovery of new compounds derived from it that may exceed our expectations regarding antioxidant protection and perhaps even neuroprotection. This review briefly summarizes the significant amount of data gathered to date regarding the multiple health benefits of melatonin and related compounds. This review also highlights some of the most recent directions in the discovery of multifunctional pharmaceuticals intended to act as one-molecule multiple-target drugs with potential use in multifactorial diseases, including neurodegenerative disorders. Herein, we discuss the beneficial activities of melatonin derivatives reported to date, in addition to computational strategies to rationally design new derivatives by functionalization of the melatonin molecular framework. It is hoped that this review will promote more investigations on the subject from both experimental and theoretical perspectives.


Asunto(s)
Melatonina/química , Melatonina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Antioxidantes/metabolismo , Humanos
11.
Molecules ; 26(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34641423

RESUMEN

Melatonin (MT) is a molecule of paramount importance in all living organisms, due to its presence in many biological activities, such as circadian (sleep-wake cycle) and seasonal rhythms (reproduction, fattening, molting, etc.). Unfortunately, it suffers from poor solubility and, to be used as a drug, an appropriate transport vehicle has to be developed, in order to optimize its release in the human tissues. As a possible drug-delivery system, ß-cyclodextrin (ßCD) represents a promising scaffold which can encapsulate the melatonin, releasing when needed. In this work, we present a computational study supported by experimental IR spectra on inclusion MT/ßCD complexes. The aim is to provide a robust, accurate and, at the same time, low-cost methodology to investigate these inclusion complexes both with static and dynamic simulations, in order to study the main actors that drive the interactions of melatonin with ß-cyclodextrin and, therefore, to understand its release mechanism.


Asunto(s)
Biología Computacional/métodos , Sistemas de Liberación de Medicamentos , Melatonina/metabolismo , Simulación de Dinámica Molecular , beta-Ciclodextrinas/metabolismo , Humanos , Melatonina/química , Solubilidad , beta-Ciclodextrinas/química
12.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641628

RESUMEN

This work aims to assess the recently established anti-inflammatory and antioxidant potential of melatonin of plant origin extracted from the plant matrix as a phytomelatonin complex (PHT-MLT), and compare its activity with synthetic melatonin (SNT-MLT) when used on its own or with vitamin C. For this purpose, a COX-2 enzyme inhibitory activity test, an antiradical activity in vitro and on cell lines assays, was performed on both PHT-MLT and SNT-MLT products. COX-2 inhibitory activity of PHT-MLT was found to be ca. 6.5 times stronger than that of SNT-MLT (43.3% and 6.7% enzyme inhibition, equivalent to the activity of acetylsalicylic acid in conc. 30.3 ± 0.2 and 12.0 ± 0.3 mg/mL, respectively). Higher antiradical potential and COX-2 inhibitory properties of PHT-MLT could be explained by the presence of additional naturally occurring constituents in alfalfa, chlorella, and rice, which were clearly visible on the HPLC-ESI-QTOF-MS fingerprint. The antiradical properties of PHT-MLT determined in the DPPH test (IC50 of 21.6 ± 1 mg of powder/mL) were found to originate from the presence of other metabolites in the 50% EtOH extract while SNT-MLT was found to be inactive under the applied testing conditions. However, the antioxidant studies on HaCaT keratinocytes stimulated with H2O2 revealed a noticeable activity in all samples. The presence of PHT-MLT (12.5, 25 and 50 µg/mL) and vitamin C (12.5, 25 and 50 µg/mL) in the H2O2-pretreated HaCaT keratinocytes protected the cells from generating reactive oxygen species. This observation confirms that MLT-containing samples affect the intracellular production of enzymes and neutralize the free radicals. Presented results indicated that MLT-containing products in combination with Vitamin C dosage are worth to be considered as a preventive alternative in the therapy of various diseases in the etiopathogenesis, of which radical and inflammatory mechanisms play an important role.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Ciclooxigenasa 2/metabolismo , Queratinocitos/citología , Melatonina/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antioxidantes/síntesis química , Antioxidantes/química , Ácido Ascórbico/farmacología , Línea Celular , Regulación hacia Abajo , Sinergismo Farmacológico , Radicales Libres/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/efectos adversos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Melatonina/síntesis química , Melatonina/química , Fitoquímicos/química , Fitoquímicos/farmacología
13.
Nutrients ; 13(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34684482

RESUMEN

Sleep is an essential component of overall human health but is so tightly regulated that when disrupted can cause or worsen certain ailments. An important part of this process is the presence of the well-known hormone, melatonin. This compound assists in the governing of sleep and circadian rhythms. Previous studies have postulated that dysregulation of melatonin rhythms is the driving force behind sleep and circadian disorders. A computer-aided search spanning the years of 2015-2020 using the search terms melatonin, circadian rhythm, disorder yielded 52 full text articles that were analyzed. We explored the mechanisms behind melatonin dysregulation and how it affects various disorders. Additionally, we examined associated therapeutic treatments including bright light therapy (BLT) and exogenous forms of melatonin. We found that over the past 5 years, melatonin has not been widely investigated in clinical studies thus there remains large gaps in its potential utilization as a therapy.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/metabolismo , Animales , Vías Biosintéticas , Ritmo Circadiano/efectos de la radiación , Humanos , Luz , Melatonina/biosíntesis , Melatonina/química , Transcripción Genética
14.
Biomolecules ; 11(10)2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34680082

RESUMEN

Atopic dermatitis (AD) is caused by multiple factors that trigger chronic skin inflammation, including a defective skin barrier, immune cell activation, and microbial exposure. Although melatonin has an excellent biosafety profile and a potential to treat AD, there is limited clinical evidence from controlled trials that support the use of melatonin as an AD treatment. The delivery of melatonin via the transdermal delivery system is also a challenge in designing melatonin-based AD treatments. In this study, we generated melatonin-loaded extracellular vesicle-mimetic nanoparticles (MelaNVs) to improve the transdermal delivery of melatonin and to evaluate their therapeutic potential in AD. The MelaNVs were spherical nanoparticles with an average size of 100 nm, which is the optimal size for the transdermal delivery of drugs. MelaNVs showed anti-inflammatory effects by suppressing the release of TNF-α and ß-hexosaminidase in LPS-treated RAW264.7 cells and compound 48/80-treated RBL-2H3 cells, respectively. MelaNVs showed a superior suppressive effect compared to an equivalent concentration of free melatonin. Treating a 2,4-dinitrofluorobenzene (DNCB)-induced AD-like mouse model with MelaNVs improved AD by suppressing local inflammation, mast cell infiltration, and fibrosis. In addition, MelaNVs effectively suppressed serum IgE levels and regulated serum IFN-γ and IL-4 levels. Taken together, these results suggest that MelaNVs are novel and efficient transdermal delivery systems of melatonin and that MelaNVs can be used as a treatment to improve AD.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Vesículas Extracelulares/química , Melatonina/farmacología , Nanopartículas/química , Administración Tópica , Animales , Biomimética , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/patología , Dinitroclorobenceno/toxicidad , Células HEK293 , Humanos , Melatonina/química , Ratones , Células RAW 264.7
15.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681652

RESUMEN

Fusarium graminearum is a destructive fungal pathogen that threatens the production and quality of wheat, and controlling this pathogen is a significant challenge. As the cost-effective homolog of melatonin, 5-methoxyindole showed strong activity against F. graminearum. In the present study, our results showed the strong adverse activity of 5-methoxyindole against F. graminearum by inhibiting its growth, formation, and conidia germination. In addition, 5-methoxyindole could induce malformation, reactive oxygen species (ROS) accumulation, and cell death in F. graminearum hyphae and conidia. In response to 5-methoxyindole, F. graminearum genes involved in scavenging reactive oxygen species were significantly downregulated. Overall, these findings reveal the mechanism of antifungal action of melatonin-homolog 5-methoxyindole. To the best of our knowledge, this is the first report that a novel melatonin homolog confers strong antifungal activity against F. graminearum, and 5-methoxyindole is a potential compound for protecting wheat plants from F. graminearum infection.


Asunto(s)
Fusarium/efectos de los fármacos , Indoles/farmacología , Regulación hacia Abajo/efectos de los fármacos , Proteínas Fúngicas/genética , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Melatonina/química , Melatonina/farmacología , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo
16.
Phys Chem Chem Phys ; 23(36): 20615-20626, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34514491

RESUMEN

The accumulation of ß-amyloid (Aß) and tau protein is considered to be an important pathological characteristic of Alzheimer's disease (AD). Failure of medicine targeting Aß has drawn more attention to the influence of tau protein and its fibrillization on neurodegeneration. Increasing evidence shows that melatonin (Mel) can effectively inhibit the formation of tau fibrils and disassemble preformed tau fibrils. However, the underlying mechanism is poorly understood. In this work, we investigated the kinetics of melatonin binding and destabilizing the tetrameric protofilament and octameric filament of tau R3-R4 domains by performing microsecond all-atom molecular dynamics simulations. Our results show that Mel is able to disrupt the C-shaped structure of the tau protofilament and filament, and destabilizes the association between N- and C-termini. Mel predominantly binds to ß1 and ß6-ß8 regions and favors contact with the elongation surface, which is dominantly driven by hydrogen bonding interactions and facilitated by other interactions. The strong π-π stacking interaction of Mel with Y310 impedes the intramolecular CH-π interaction between I308 and Y310, and the cation-π interaction of Mel with R379 interferes with the formation of the D348-R379 salt bridge. Moreover, Mel occupies the protofilament surface in the tetrameric protofilament and prevents the formation of intermolecular hydrogen bonds between residues K331 and Q336 in the octameric filament. Our work provides molecular insights into Mel hindering tau fibrillization or destabilizing the protofilament and filament, and the revealed inhibitory mechanisms provide useful clues for the design of efficient anti-amyloid agents.


Asunto(s)
Melatonina/química , Simulación de Dinámica Molecular , Proteínas tau/química , Sitios de Unión , Humanos
17.
AAPS PharmSciTech ; 22(5): 200, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34212283

RESUMEN

Mucositis is one of the most adverse effects of 5-fluorouracil (5-FU) and had no standard drug for treatment. Melatonin is a neurohormone, and can ameliorate radiotherapy-induced small intestinal mucositis. Melatonin encapsulated in niosomes improved its poor bioavailability. Succinyl melatonin, a melatonin derivative, showed prolonged release compared with melatonin. This study investigated the efficacy of melatonin niosome gel (MNG) and succinyl melatonin niosome gel (SNG) in 5-FU-induced small intestinal mucositis treatment in mice. MNG and SNG with particle sizes of 293 and 270 nm were shown to have mucoadhesive potentials. The effect of a daily oral application of MNG, SNG, or fluocinolone acetonide gel (FAG, positive control) was compared to that of the normal group. The body weight, food consumption, histology, Fourier transform infrared (FTIR) spectroscopy, inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1ß), and malondialdehyde (MDA) in the small intestine were monitored. The results showed decreased %body weight and food consumption in all 5-FU-injected groups compared with the normal group. The MNG and SNG treatments maintained the food consumption and the normal integrity of the small intestines, as evidenced by villus length and crypt depth, similar to the observations in the normal groups. The FTIR spectra showed no change in lipids of the MNG and SNG groups compared with the normal group. Moreover, SNG could reduce IL-1ß content to a level that was not different from the level in the normal groups. Therefore, the oral application of MNG and SNG could protect against 5-FU-induced small intestinal mucositis in mice.


Asunto(s)
Liposomas/química , Melatonina/administración & dosificación , Mucositis/tratamiento farmacológico , Administración Oral , Animales , Fluorouracilo/toxicidad , Interleucina-1beta/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestino Delgado/patología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Melatonina/química , Melatonina/farmacología , Ratones , Ratones Endogámicos ICR , Mucositis/inducido químicamente , Mucositis/patología , Tamaño de la Partícula , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Phys Chem Lett ; 12(31): 7387-7393, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34328330

RESUMEN

The antioxidizing capability of membrane antioxidants is strongly affected by the submolecular regions of the membrane that they locate. However, the concurrent determination of their location in the membranes and the consequent antioxidizing effect remains difficult. Using our field-induced droplet ionization mass spectrometry methodology, here we show the rapid determination of the antioxidation effect and the spatial distribution of melatonin in POPC membranes. Melatonin effectively protects the membrane lipids against hydroxyl radicals originating from the Fenton reactions in the water phase but cannot protect the lipids against singlet oxygen generated by a lipophilic photosensitizer in the lipid tail region (oil phase). These varied antioxidizing behaviors indicate that melatonin dwells at the headgroup subregion of the membranes. We anticipate that the methodology in this study can be widely utilized in the screening of antioxidants' spatial distribution and antioxidizing efficiency, and eventually in designing novel antioxidants that could deliver specific functions.


Asunto(s)
Antioxidantes/farmacología , Melatonina/farmacología , Fosfatidilcolinas/química , Antioxidantes/química , Radical Hidroxilo/antagonistas & inhibidores , Espectrometría de Masas , Melatonina/química , Estructura Molecular
19.
Molecules ; 26(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200947

RESUMEN

The use of nanosized particles has emerged to facilitate selective applications in medicine. Drug-delivery systems represent novel opportunities to provide stricter, focused, and fine-tuned therapy, enhancing the therapeutic efficacy of chemical agents at the molecular level while reducing their toxic effects. Melatonin (N-acetyl-5-methoxytriptamine) is a small indoleamine secreted essentially by the pineal gland during darkness, but also produced by most cells in a non-circadian manner from which it is not released into the blood. Although the therapeutic promise of melatonin is indisputable, aspects regarding optimal dosage, biotransformation and metabolism, route and time of administration, and targeted therapy remain to be examined for proper treatment results. Recently, prolonged release of melatonin has shown greater efficacy and safety when combined with a nanostructured formulation. This review summarizes the role of melatonin incorporated into different nanocarriers (e.g., lipid-based vesicles, polymeric vesicles, non-ionic surfactant-based vesicles, charge carriers in graphene, electro spun nanofibers, silica-based carriers, metallic and non-metallic nanocomposites) as drug delivery system platforms or multilevel determinations in various in vivo and in vitro experimental conditions. Melatonin incorporated into nanosized materials exhibits superior effectiveness in multiple diseases and pathological processes than does free melatonin; thus, such information has functional significance for clinical intervention.


Asunto(s)
Portadores de Fármacos/química , Melatonina/química , Melatonina/farmacología , Nanopartículas/química , Animales , Ritmo Circadiano/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanoestructuras/química , Glándula Pineal/efectos de los fármacos
20.
J Nanobiotechnology ; 19(1): 170, 2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34092246

RESUMEN

BACKGROUND: Inflammatory osteolysis after total joint replacement (TJR) may cause implant failure, periprosthetic fractures, and be a severe threat to global public health. Our previous studies demonstrated that melatonin had a therapeutic effect on wear-particles induced osteolysis. Gut microbiota is closely related to bone homeostasis, and has been proven to be affected by melatonin. However, whether melatonin could play its anti-osteolysis effects through reprogramming gut microbiota remains elusive. RESULTS: Here, we demonstrated that melatonin could alleviate Ti-particles induced osteolysis, while this therapeutic effect was blocked by antibiotic cocktail treatment. Interestingly, transplantation of fecal microbiota from mice treated with melatonin reappeared the same beneficial effect. Analysis of the 16S rRNA revealed that melatonin could reverse dysbacteriosis triggered by osteolysis, and elevate the relative abundance of some short chain fatty acid (SCFA) producing bacteria. Moreover, butyrate was enriched by exogenous melatonin administration, while acetate and propionate did not show an evident difference. This was consistent with the results of the metagenomic approach (PICRUSt2) analysis, which revealed a general increase in the synthetic enzymes of butyrate. More importantly, direct supplementation of butyrate could also recapitulate the anti-osteolysis effect of melatonin. Further analysis identified that butyrate alleviated osteolysis via activating its receptor GPR109A, and thus to suppress the activation of NLRP3 inflammasome triggered by Ti-particles. CONCLUSIONS: Taken together, our results suggested that the benefits of melatonin mainly depend on the ability of modulating gut microbiota and regulating butyrate production.


Asunto(s)
Butiratos/metabolismo , Melatonina/farmacología , Osteólisis/prevención & control , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Titanio/farmacología , Animales , Ácidos Grasos Volátiles , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Homeostasis , Masculino , Melatonina/química , Melatonina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nanopartículas/química , Nanopartículas/uso terapéutico , Osteólisis/metabolismo , Osteólisis/patología , ARN Ribosómico 16S , Titanio/química , Titanio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...